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2 2025 AIME II Problems

Problem 1:

Six points A, B, C, D, E, and F lie in a straight line in that order. Suppose that (G is a point not on the line
and that AC' = 26, BD = 22, CE = 31, DF = 33, AF = 73, CG = 40, and DG = 30. Find the area
of ABGE.

Problem 2:

Find the sum of all positive integers 7 such that n + 2 divides the product 3(n + 3)(n? + 9).

Problem 3:

Four unit squares form a 2 x 2 grid. Each of the 12 unit line segments forming the sides of the&jres is
colored either red or blue in such a way that each unit square has 2 red sides and 2 blue sides. O mple
is shown below (red is solid, blue is dashed). Find the number of such colorings. @
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Problem 4: c‘,
The product

e k'}.’
63 log,, (5 10%4 r-24 logf, :—35) - 1oges (53963)
< 108k 41 (5"‘ ~ logs 0Zg 521) log7 (5%2)  logey (5%°)

is equal to 7', where 1 and 7 are relati ime positive integers. Find 2 + n.
Problem 5:
Suppose AABC' has angl Y = 84°, ZABC = 60°, and ZACB = 36°. Let D, E, and F be
the midpoints of sides B , and AB, respectively. The circumcircle of ADFEF intersects BD, AF,
and AF at points GG, H,@n raﬂ;pecnvely The pomt<; G, D, E H, .J, and F divide the circumcircle of
ADEF into six mi s.a'a shown. Find DE +2-H.J +3- FG, where the arcs are measured in degrees.
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Problem 6:

Circle wy with radius 6 centered at point A is internally tangent at point B to circle ws with radius 15. Points
C and D lie on wy such that BC' is a diameter of wy and BC' | AD. The rectangle /5F G H is inscribed
in w; such that FF L BC, C is closer to GH thanto EF, and D is closer to F G than to E H, as shown.
Triangles ADGF and ACH G have equal areas. The area of rectangle EFGH is %, where m and n are
relatively prime positive integers. Find m + n.
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Problem 7: Q

Let A be the set of positive integer divisors of 2025. Let B b
probability that B is a nonempty set with the property that the leas

is &, where /m and n are relatively prime positive integers

omly selected subset of A. The
mon multiple of its elements is 2025
.

Problem 8:

From an unlimited supply of 1-cent coins, 10-ce nd 25-cent coins, Silas wants to find a collection

of coins that has a total value of N cents, w fK&is a positive integer. He uses the so-called greedy

algorithm, successively choosing the coin o Qt value that does not cause the value of his collection to

exceed N. For example, to get 42 cents, Si hoose a 25-cent coin, then a 10-cent coin, then 7 1-cent

coins. However, this collection of 9 cai more coins than necessary to get a total of 42 cents; indeed,

choosing 4 10-cent coins and 2 cuins achieves the same total value with only 6 coins.

In general, the greedy algorith ]\e s for a given N if no other collection of 1-cent, 10-cent, and 25-
ments using strictly fewer coins than the collection given by the greedy

cent coins gives a total val
algorithm. Find the numx values of NV between 1 and 1000 inclusive for which the greedy algorithm
®

succeeds. H ®
Problem 9: Q
There are | N - in the interval 0 < = < 27 where f(z) = sin (77 - sin(5z)) = 0. For  of these n

valuesof ; aph of y = f(x) is tangent to the z-axis. Find n + ¢.

Problem

Sixteen chairs are arranged in a row. Eight people each select a chair in which to sit so that no person sits
next to two other people. Let N be the number of subsets of the 16 chairs that could be selected. Find the
remainder when NV is divided by 1000.

Problem 11:

Let .S be the set of vertices of a regular 24-gon. Find the number of ways to draw 12 segments of equal
lengths so that each vertex in S is an endpoint of exactly one of the 12 segments.

Close



4 2025 AIME II Problems

Problem 12:
Let A) A5As ... A bean 11-sided non-convex simple polygon with the following properties:

» For every integer 2 < i < 10, the area of AA; A1 A;; isequalto 1.
» For every integer 2 < i < 10, cos(£A; A1 Ai4) = %3

e The perimeter of the 11-gon A1 AsAs ... Ay is equal to 20.

Then A1 A9 + A1 A1 = m‘/_% where m. n. p. and ¢ are positive integers, n is not divisible by the square

of any prime. and no prime divides all of . p. and ¢. Find m +n +p +q. :
Problem 13: @
Let iy, @9, x3.... be a sequence of rational numbers defined by @1 = %%

and
1 1
.'I?k_i_l:—(;t:k—f———l) H.
a) @
for all & > 1. Then 9025 can be expressed as ’T’: where m and n are relfi ime positive integers. Find

the remainder when m + n is divided by 1000.

Problem 14: Q
Let AABC be aright triangle with £ZA = 90° and BC = qW: ist points K and L inside the triangle
such that

AK = AL = BK
4
The area of the quadrilateral B K LC' can be expre ny/3 for some positive integer n. Find n.

Problem 15:

There are exactly three positive real nu v8uch that the function

&‘ _18) (2 — 72)(x — 98)(x — k)

defined over the positivegealynmbers achieves its minimum value at exactly two positive real numbers 2.
Find the sum of these threeyalyes of k.
@




